When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Mental calculation - Wikipedia

    en.wikipedia.org/wiki/Mental_calculation

    Since 9 = 101, to multiply a number by nine, multiply it by 10 and then subtract the original number from the result. For example, 9 × 27 = 270 − 27 = 243. This method can be adjusted to multiply by eight instead of nine, by doubling the number being subtracted; 8 × 27 = 270 − (2×27) = 270 − 54 = 216.

  3. Multiplication algorithm - Wikipedia

    en.wikipedia.org/wiki/Multiplication_algorithm

    Decimal: Binary: 11 3 1011 11 5 6 101 110 2 12 10 1100 1 24 1 11000 —— —————— 33 100001 Describing the steps explicitly: 11 and 3 are written at the top; 11 is halved (5.5) and 3 is doubled (6). The fractional portion is discarded (5.5 becomes 5).

  4. Transposable integer - Wikipedia

    en.wikipedia.org/wiki/Transposable_integer

    For any integer coprime to 10, its reciprocal is a repeating decimal without any non-recurring digits. E.g. 1 ⁄ 143 = 0. 006993 006993 006993.... While the expression of a single series with vinculum on top is adequate, the intention of the above expression is to show that the six cyclic permutations of 006993 can be obtained from this repeating decimal if we select six consecutive digits ...

  5. Multiplication and repeated addition - Wikipedia

    en.wikipedia.org/wiki/Multiplication_and...

    Multiplication can also be thought of as scaling. In the above animation, we see 3 being multiplied by 2, giving 6 as a result. One theory of learning multiplication derives from the work of the Russian mathematics educators in the Vygotsky Circle which was active in the Soviet Union between the world wars. Their contribution is known as the ...

  6. Trachtenberg system - Wikipedia

    en.wikipedia.org/wiki/Trachtenberg_system

    The method for general multiplication is a method to achieve multiplications with low space complexity, i.e. as few temporary results as possible to be kept in memory. . This is achieved by noting that the final digit is completely determined by multiplying the last digit of the multiplic

  7. Multiplication table - Wikipedia

    en.wikipedia.org/wiki/Multiplication_table

    Figure 1 is used for multiples of 1, 3, 7, and 9. Figure 2 is used for the multiples of 2, 4, 6, and 8. These patterns can be used to memorize the multiples of any number from 0 to 10, except 5.

  8. Multiplication - Wikipedia

    en.wikipedia.org/wiki/Multiplication

    Four bags with three marbles per bag gives twelve marbles (4 × 3 = 12). Multiplication can also be thought of as scaling. Here, 2 is being multiplied by 3 using scaling, giving 6 as a result. Animation for the multiplication 2 × 3 = 6 4 × 5 = 20. The large rectangle is made up of 20 squares, each 1 unit by 1 unit.

  9. Idempotence - Wikipedia

    en.wikipedia.org/wiki/Idempotence

    Idempotence (UK: / ˌ ɪ d ɛ m ˈ p oʊ t ən s /, [1] US: / ˈ aɪ d ə m-/) [2] is the property of certain operations in mathematics and computer science whereby they can be applied multiple times without changing the result beyond the initial application.