Search results
Results From The WOW.Com Content Network
Separation and Purification Technology is a peer-reviewed scientific journal published by Elsevier, covering methods for separation and purification in chemical and environmental engineering, including research on the separation and purification of liquids, vapors, and gases, as well as carbon capture and separation, excluding methods intended for analytical purposes, soil science, polymer ...
Purification in a chemical context is the physical separation of a chemical substance of interest from foreign or contaminating substances. Pure results of a successful purification process are termed isolate. The following list of chemical purification methods should not be considered exhaustive.
A separation process is a method that converts a mixture or a solution of chemical substances into two or more distinct product mixtures, [1] a scientific process of separating two or more substances in order to obtain purity. At least one product mixture from the separation is enriched in one or more of the source mixture's constituents.
Fractionation makes it possible to isolate more than two components in a mixture in a single run. This property sets it apart from other separation techniques. Fractionation is widely employed in many branches of science and technology. Mixtures of liquids and gasses are separated by fractional distillation by difference in boiling point.
In manufacturing, the simulated moving bed (SMB) process is a highly engineered process for implementing chromatographic separation. It is used to separate one chemical compound or one class of chemical compounds from one or more other chemical compounds to provide significant quantities of the purified or enriched material at a lower cost than could be obtained using simple (batch ...
Many separation processes do not operate at room temperature (e.g. distillation), which greatly increases the cost of the process when continuous heating or cooling is applied. Performing gentle molecular separation is linked with nanofiltration that is often not included with other forms of separation processes (centrifugation). These are two ...
The experimental separation factor of CO 2 to N 2 was found to be 1.1-1.2 at 100 °C to 500 °C, which is higher than the separation factor limit of 0.8 predicted by Knudsen diffusion. Though the separation factor was low due to pinholes observed in the membrane, this demonstrates the potential of perovskite materials in their selective surface ...
Ion exchange is widely used in the food and beverage industry, hydrometallurgy, metals finishing, chemical, petrochemical, pharmaceutical technology, sugar and sweetener production, ground- and potable-water treatment, nuclear, softening, industrial water treatment, semiconductor, power, and many other industries. [citation needed]