When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Diffraction from slits - Wikipedia

    en.wikipedia.org/wiki/Diffraction_from_slits

    Because diffraction is the result of addition of all waves (of given wavelength) along all unobstructed paths, the usual procedure is to consider the contribution of an infinitesimally small neighborhood around a certain path (this contribution is usually called a wavelet) and then integrate over all paths (= add all wavelets) from the source to the detector (or given point on a screen).

  3. Fraunhofer diffraction - Wikipedia

    en.wikipedia.org/wiki/Fraunhofer_diffraction

    In optics, the Fraunhofer diffraction equation is used to model the diffraction of waves when plane waves are incident on a diffracting object, and the diffraction pattern is viewed at a sufficiently long distance (a distance satisfying Fraunhofer condition) from the object (in the far-field region), and also when it is viewed at the focal plane of an imaging lens.

  4. Fraunhofer diffraction equation - Wikipedia

    en.wikipedia.org/.../Fraunhofer_diffraction_equation

    The Fraunhofer diffraction equation is an approximation which can be applied when the diffracted wave is observed in the far field, and also when a lens is used to focus the diffracted light; in many instances, a simple analytical solution is available to the Fraunhofer equation – several of these are derived below.

  5. Diffraction - Wikipedia

    en.wikipedia.org/wiki/Diffraction

    The form of the light diffracted by a grating depends on the structure of the elements and the number of elements present, but all gratings have intensity maxima at angles θ m which are given by the grating equation (⁡ ⁡) =, where is the angle at which the light is incident, is the separation of grating elements, and is an integer which ...

  6. Diffraction grating - Wikipedia

    en.wikipedia.org/wiki/Diffraction_grating

    A blazed diffraction grating reflecting only the green portion of the spectrum from a room's fluorescent lighting. For a diffraction grating, the relationship between the grating spacing (i.e., the distance between adjacent grating grooves or slits), the angle of the wave (light) incidence to the grating, and the diffracted wave from the grating is known as the grating equation.

  7. List of optics equations - Wikipedia

    en.wikipedia.org/wiki/List_of_optics_equations

    r = position from aperture diffracted from it to a point; α 0 = incident angle with respect to the normal, from source to aperture; α = diffracted angle, from aperture to a point; S = imaginary surface bounded by aperture ^ = unit normal vector to the aperture

  8. Refractive index and extinction coefficient of thin film ...

    en.wikipedia.org/wiki/Refractive_index_and...

    Spectroscopic reflectance of a thin film on a substrate represents the ratio of the intensity of light reflected from the sample to the intensity of incident light, measured over a range of wavelengths, whereas spectroscopic transmittance, T(λ), represents the ratio of the intensity of light transmitted through the sample to the intensity of ...

  9. Diffraction-limited system - Wikipedia

    en.wikipedia.org/wiki/Diffraction-limited_system

    Memorial in Jena, Germany to Ernst Karl Abbe, who approximated the diffraction limit of a microscope as = ⁡, where d is the resolvable feature size, λ is the wavelength of light, n is the index of refraction of the medium being imaged in, and θ (depicted as α in the inscription) is the half-angle subtended by the optical objective lens (representing the numerical aperture).