Search results
Results From The WOW.Com Content Network
In this situation it is generally uncommon to talk about half-life in the first place, but sometimes people will describe the decay in terms of its "first half-life", "second half-life", etc., where the first half-life is defined as the time required for decay from the initial value to 50%, the second half-life is from 50% to 25%, and so on. [7]
The initial concentration of any non-nutritive phytochemical in the blood plasma is zero unless a person has recently ingested a food or beverage. For example, as increasing amounts of green tea extract are consumed, a graded increase in plasma catechin can be measured, and the major compound is eliminated with a half-life of about 5 hours. [13]
Absorption half-life 1 h, elimination half-life 12 h. Biological half-life (elimination half-life, pharmacological half-life) is the time taken for concentration of a biological substance (such as a medication) to decrease from its maximum concentration (C max) to half of C max in the blood plasma.
measurement of the initial rate requires accurate determination of small changes in concentration in short times (compared to the reaction half-life) and is sensitive to errors, and the rate equation will not be completely determined if the rate also depends on substances not present at the beginning of the reaction, such as intermediates or ...
If one adds 1 litre of water to this solution, the salt concentration is reduced. The diluted solution still contains 10 grams of salt (0.171 moles of NaCl). Mathematically this relationship can be shown by equation: = where c 1 = initial concentration or molarity; V 1 = initial volume
C 0 is the initial concentration (at t=0) t 1/2 is the half-life time of the drug, which is the time needed for the plasma drug concentration to drop to its half; Therefore, the amount of drug present in the body at time t is;
A V D greater than the total volume of body water (approximately 42 liters in humans [5]) is possible, and would indicate that the drug is highly distributed into tissue. In other words, the volume of distribution is smaller in the drug staying in the plasma than that of a drug that is widely distributed in tissues.
where p A is the partial pressure of A over the surface, [S] is the concentration of free sites in number/m 2, [A ad] is the surface concentration of A in molecules/m 2 (concentration of occupied sites), and k ad and k d are constants of forward adsorption reaction and backward desorption reaction in the above reactions.