Search results
Results From The WOW.Com Content Network
Min-Conflicts solves the N-Queens Problem by selecting a column from the chess board for queen reassignment. The algorithm searches each potential move for the number of conflicts (number of attacking queens), shown in each square. The algorithm moves the queen to the square with the minimum number of conflicts, breaking ties randomly.
Such problems are usually solved via search, in particular a form of backtracking or local search. Constraint propagation is another family of methods used on such problems; most of them are incomplete in general, that is, they may solve the problem or prove it unsatisfiable, but not always. Constraint propagation methods are also used in ...
For this class of problems, the instance data P would be the integers m and n, and the predicate F. In a typical backtracking solution to this problem, one could define a partial candidate as a list of integers c = (c[1], c[2], …, c[k]), for any k between 0 and n, that are to be assigned to the first k variables x[1], x[2], …, x[k]. The ...
Constraint satisfaction problems on finite domains are typically solved using a form of search. The most used techniques are variants of backtracking, constraint propagation, and local search. These techniques are also often combined, as in the VLNS method, and current research involves other technologies such as linear programming. [14]
The eight queens puzzle is the problem of placing eight chess queens on an 8×8 chessboard so that no two queens threaten each other; thus, a solution requires that no two queens share the same row, column, or diagonal. There are 92 solutions.
Some of the better-known exact cover problems include tiling, the n queens problem, and Sudoku. The name dancing links , which was suggested by Donald Knuth , stems from the way the algorithm works, as iterations of the algorithm cause the links to "dance" with partner links so as to resemble an "exquisitely choreographed dance."
Some hobbyists have developed computer programs that will solve Sudoku puzzles using a backtracking algorithm, which is a type of brute force search. [3] Backtracking is a depth-first search (in contrast to a breadth-first search), because it will completely explore one branch to a possible solution before moving to another branch.
One way to speed up a brute-force algorithm is to reduce the search space, that is, the set of candidate solutions, by using heuristics specific to the problem class. For example, in the eight queens problem the challenge is to place eight queens on a standard chessboard so that no queen attacks any other. Since each queen can be placed in any ...