Search results
Results From The WOW.Com Content Network
The upper mantle of Earth is a very thick layer of rock inside the planet, which begins just beneath the crust (at about 10 km (6.2 mi) under the oceans and about 35 km (22 mi) under the continents) and ends at the top of the lower mantle at 670 km (420 mi). Temperatures range from approximately 500 K (227 °C; 440 °F) at the upper boundary ...
Estimates for the viscosity of the upper mantle range between 10 19 and 10 24 Pa·s, depending on depth, [25] temperature, composition, state of stress, and numerous other factors. Thus, the upper mantle can only flow very slowly.
Mantle convection is the very slow creep of Earth's solid silicate mantle as convection currents carry heat from the interior to the planet's surface. [2] [3] Mantle convection causes tectonic plates to move around the Earth's surface. [4] The Earth's lithosphere rides atop the asthenosphere, and the two form the components of the upper mantle ...
The mantle is divided into upper and lower mantle [21] separated by a transition zone. [22] The lowest part of the mantle next to the core-mantle boundary is known as the D″ (D-double-prime) layer. [23] The pressure at the bottom of the mantle is ≈140 GPa (1.4 Matm). [24]
Scientists using an ocean drilling vessel have dug the deepest hole ever in rock from Earth's mantle - penetrating 4,160 feet (1,268 meters) below the Atlantic seabed - and obtained a large sample ...
Lherzolite is thought to make up much of the upper mantle. [14] It has almost exactly the composition of a mixture of three parts harzburgite and one part tholeiitic basalt ( pyrolite ) and is the likely source rock for basaltic magma.
The mineral olivine (/ ˈ ɒ l. ɪ ˌ v iː n /) is a magnesium iron silicate with the chemical formula (Mg,Fe) 2 Si O 4.It is a type of nesosilicate or orthosilicate.The primary component of the Earth's upper mantle, [9] it is a common mineral in Earth's subsurface, but weathers quickly on the surface.
The silicate mantle of the Earth's moon is approximately 1300–1400 km thick, and is the source of mare basalts. [4] The lunar mantle might be exposed in the South Pole-Aitken basin or the Crisium basin. [4] The lunar mantle contains a seismic discontinuity at ~500 kilometers (310 miles) depth, most likely related to a change in composition. [4]