Ads
related to: cyclohexanone ketone supplement
Search results
Results From The WOW.Com Content Network
Cyclohexanone is produced by the oxidation of cyclohexane in air, typically using cobalt catalysts: [11]. C 6 H 12 + O 2 → (CH 2) 5 CO + H 2 O. This process forms cyclohexanol as a by-product, and this mixture, called "KA Oil" for ketone-alcohol oil, is the main feedstock for the production of adipic acid.
First, kinetic studies of reactions between diazomethane and various ketones have shown that the overall reaction follows second order kinetics. [7] Additionally, the reactivity of two series of ketones are in the orders Cl 3 CCOCH 3 > CH 3 COCH 3 > C 6 H 5 COCH 3 and cyclohexanone > cyclopentanone > cycloheptanone > cyclooctanone.
Cyclohexanone: phencyclidine Diethylamine and its salts lysergic acid diethylamide ethyl 3-oxo-4-phenylbutanoate phenylacetone: ethyl-3-(1,3-benzodioxol-5-yl)-2-methyloxirane-2-carboxylate (MDP2P ethyl glycidate) MDMA: Formamide: amphetamine, methamphetamine Formic acid: amphetamine, methamphetamine Lithium aluminum hydride: amphetamine ...
The Wieland–Miescher ketone is the Robinson annulation product of 2-methyl-cyclohexane-1,3-dione and methyl vinyl ketone. This compound is used in the syntheses of many steroids possessing important biological properties and can be made enantiopure using proline catalysis. [14] Wieland–Miescher ketone
Cycloheptanone is also produced by the reaction of cyclohexanone with sodium ethoxide and nitromethane. The resulting sodium salt of 1-(nitromethyl)cyclohexanol is added to acetic acid and shaken with hydrogen gas in the presence of W-4 Raney nickel catalyst. Sodium nitrite and acetic acid are then added to give cycloheptanone. [5]
In organic chemistry, a ketone / ˈ k iː t oʊ n / is an organic compound with the structure R−C(=O)−R', where R and R' can be a variety of carbon-containing substituents. Ketones contain a carbonyl group −C(=O)− (a carbon-oxygen double bond C=O). The simplest ketone is acetone (where R and R' are methyl), with the formula (CH 3) 2 CO ...