Search results
Results From The WOW.Com Content Network
In mathematics, an Euler–Cauchy equation, or Cauchy–Euler equation, or simply Euler's equation, is a linear homogeneous ordinary differential equation with variable coefficients. It is sometimes referred to as an equidimensional equation. Because of its particularly simple equidimensional structure, the differential equation can be solved ...
The Euler equations can be applied to incompressible and compressible flows. The incompressible Euler equations consist of Cauchy equations for conservation of mass and balance of momentum, together with the incompressibility condition that the flow velocity is divergence-free.
Functions that maximize or minimize functionals may be found using the Euler–Lagrange equation of the calculus of variations. A simple example of such a problem is to find the curve of shortest length connecting two points. If there are no constraints, the solution is a straight line between the points. However, if the curve is constrained to ...
In mathematics a Cauchy–Euler operator is a ... It is named after Augustin-Louis Cauchy and Leonhard Euler. The simplest example is ... Cauchy–Euler equation ...
The genius of Cauchy was illustrated in his simple solution of the problem of Apollonius—describing a circle touching three given circles—which he discovered in 1805, his generalization of Euler's formula on polyhedra in 1811, and in several other elegant problems.
By expressing the shear tensor in terms of viscosity and fluid velocity, and assuming constant density and viscosity, the Cauchy momentum equation will lead to the Navier–Stokes equations. By assuming inviscid flow, the Navier–Stokes equations can further simplify to the Euler equations. The divergence of the stress tensor can be written as
For example, [8] the function (,) = | |, regarded as a complex function with imaginary part identically zero, has both partial derivatives at (,) = (,), and it moreover satisfies the Cauchy–Riemann equations at that point, but it is not differentiable in the sense of real functions (of several variables), and so the first condition, that of ...
In classical mechanics, Euler's rotation equations are a vectorial quasilinear first-order ordinary differential equation describing the rotation of a rigid body, using a rotating reference frame with angular velocity ω whose axes are fixed to the body. They are named in honour of Leonhard Euler. Their general vector form is