When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Nucleoid - Wikipedia

    en.wikipedia.org/wiki/Nucleoid

    A hindrance in the free rotation of DNA might arise due to a topological constraint, causing the DNA in front of RNAP to become over-twisted (positively supercoiled) and the DNA behind RNAP would become under-twisted (negatively supercoiled). It has been found that a topological constraint is not needed because RNAP generates sufficient torque ...

  3. DNA gyrase - Wikipedia

    en.wikipedia.org/wiki/DNA_gyrase

    DNA gyrase, or simply gyrase, is an enzyme within the class of topoisomerase and is a subclass of Type II topoisomerases [1] that reduces topological strain in an ATP dependent manner while double-stranded DNA is being unwound by elongating RNA-polymerase [2] or by helicase in front of the progressing replication fork.

  4. Nick (DNA) - Wikipedia

    en.wikipedia.org/wiki/Nick_(DNA)

    The diagram shows the effects of nicks on intersecting DNA in a twisted plasmid. Nicking can be used to dissipate the energy held up by intersecting states. The nicks allow the DNA to take on a circular shape. [2] The diagram shows the effects of nicks on intersecting DNA forms. A plasmid is tightly wound into a negative supercoil (a).

  5. DNA - Wikipedia

    en.wikipedia.org/wiki/DNA

    With DNA in its "relaxed" state, a strand usually circles the axis of the double helix once every 10.4 base pairs, but if the DNA is twisted the strands become more tightly or more loosely wound. [43] If the DNA is twisted in the direction of the helix, this is positive supercoiling, and the bases are held more tightly together.

  6. DNA supercoil - Wikipedia

    en.wikipedia.org/wiki/DNA_supercoil

    If a DNA segment under twist strain is closed into a circle by joining its two ends, and then allowed to move freely, it takes on different shape, such as a figure-eight. This shape is referred to as a supercoil. (The noun form "supercoil" is often used when describing DNA topology.) The DNA of most organisms is usually negatively supercoiled.

  7. Nucleic acid structure - Wikipedia

    en.wikipedia.org/wiki/Nucleic_acid_structure

    The linking number for circular DNA can only be changed by breaking of a covalent bond in one of the two strands. Always an integer, the linking number of a cccDNA is the sum of two components: twists (Tw) and writhes (Wr). [16] = + Twists are the number of times the two strands of DNA are twisted around each other.

  8. Z-DNA - Wikipedia

    en.wikipedia.org/wiki/Z-DNA

    One example of a Z-DNA binding protein is the vaccinia E3L protein, which is a product of the E3L gene and mimics a mammalian protein that binds Z-DNA. [37] [38] Not only does the E3L protein have affinity to Z-DNA, it has also been found to play a role in the level of severity of virulence in mice caused by vaccinia virus, a type of poxvirus.

  9. Genetic transformation - Wikipedia

    en.wikipedia.org/wiki/Genetic_transformation

    The surface of bacteria such as E. coli is negatively charged due to phospholipids and lipopolysaccharides on its cell surface, and the DNA is also negatively charged. One function of the divalent cation therefore would be to shield the charges by coordinating the phosphate groups and other negative charges, thereby allowing a DNA molecule to ...