Search results
Results From The WOW.Com Content Network
In engineering, shear strength is the strength of a material or component against the type of yield or structural failure when the material or component fails in shear. A shear load is a force that tends to produce a sliding failure on a material along a plane that is parallel to the direction of the force. When a paper is cut with scissors ...
The critical shear stress and also the critical Shields number (and ) describe the conditions when the sediment starts moving. Note that the shear stress is a property of the current, while the critical shear stress is a property of the sediment.
The shear stress velocity has the dimension of a velocity (m/s), but is actually a representation of the shear stress. So the shear stress velocity can never be measured with a velocity meter. By using the shear stress velocity, the Shields parameter can also be written as:
The shear strength of soil depends on the effective stress, the drainage conditions, the density of the particles, the rate of strain, and the direction of the strain. For undrained, constant volume shearing, the Tresca theory may be used to predict the shear strength, but for drained conditions, the Mohr–Coulomb theory may be used.
Most of the classical engineering materials follow this rule in at least a portion of their shear failure envelope. Generally the theory applies to materials for which the compressive strength far exceeds the tensile strength. [1] In geotechnical engineering it is used to define shear strength of soils and rocks at different effective stresses.
Elastic properties describe the reversible deformation (elastic response) of a material to an applied stress.They are a subset of the material properties that provide a quantitative description of the characteristics of a material, like its strength.
Triaxial apparatus with sample attached ready for testing. In materials science, a triaxial shear test is a common method to measure the mechanical properties of many deformable solids, especially soil (e.g., sand, clay) and rock, and other granular materials or powders.
The limit surfaces of the unified strength theory in principal stress space are usually a semi-infinite dodecahedron cone with unequal sides. The shape and size of the limiting dodecahedron cone depends on the parameter b and .