When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Mountain climbing problem - Wikipedia

    en.wikipedia.org/wiki/Mountain_climbing_problem

    A trivial example. In mathematics, the mountain climbing problem is a mathematical problem that considers a two-dimensional mountain range (represented as a continuous function), and asks whether it is possible for two mountain climbers starting at sea level on the left and right sides of the mountain to meet at the summit, while maintaining equal altitudes at all times.

  3. Dijkstra's algorithm - Wikipedia

    en.wikipedia.org/wiki/Dijkstra's_algorithm

    For example, if the current node A is marked with a distance of 6, and the edge connecting it with its neighbor B has length 2, then the distance to B through A is 6 + 2 = 8. If B was previously marked with a distance greater than 8, then update it to 8 (the path to B through A is shorter).

  4. Travelling salesman problem - Wikipedia

    en.wikipedia.org/wiki/Travelling_salesman_problem

    Another related problem is the bottleneck travelling salesman problem: Find a Hamiltonian cycle in a weighted graph with the minimal weight of the weightiest edge. A real-world example is avoiding narrow streets with big buses. [15] The problem is of considerable practical importance, apart from evident transportation and logistics areas.

  5. Shortest path problem - Wikipedia

    en.wikipedia.org/wiki/Shortest_path_problem

    Shortest path (A, C, E, D, F), blue, between vertices A and F in the weighted directed graph. In graph theory, the shortest path problem is the problem of finding a path between two vertices (or nodes) in a graph such that the sum of the weights of its constituent edges is minimized.

  6. Related rates - Wikipedia

    en.wikipedia.org/wiki/Related_rates

    The rate of change is usually with respect to time. Because science and engineering often relate quantities to each other, the methods of related rates have broad applications in these fields. Differentiation with respect to time or one of the other variables requires application of the chain rule, [1] since most problems involve several variables.

  7. The spider and the fly problem - Wikipedia

    en.wikipedia.org/wiki/The_spider_and_the_fly_problem

    The spider is 1 foot below the ceiling and horizontally centred on one 12′×12′ wall. The fly is 1 foot above the floor and horizontally centred on the opposite wall. The problem is to find the minimum distance the spider must crawl along the walls, ceiling and/or floor to reach the fly, which remains stationary. [1]

  8. Jeep problem - Wikipedia

    en.wikipedia.org/wiki/Jeep_problem

    The jeep problem, [1] desert crossing problem [2] or exploration problem [3] is a mathematics problem in which a jeep must maximize the distance it can travel into a desert with a given quantity of fuel. The jeep can only carry a fixed and limited amount of fuel, but it can leave fuel and collect fuel at fuel dumps anywhere in the desert.

  9. Bridge and torch problem - Wikipedia

    en.wikipedia.org/wiki/Bridge_and_torch_problem

    The bridge and torch problem (also known as The Midnight Train [1] and Dangerous crossing [2]) is a logic puzzle that deals with four people, a bridge and a torch. It is in the category of river crossing puzzles , where a number of objects must move across a river, with some constraints.