When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. List of axioms - Wikipedia

    en.wikipedia.org/wiki/List_of_axioms

    This is a list of axioms as that term is understood in mathematics. In epistemology , the word axiom is understood differently; see axiom and self-evidence . Individual axioms are almost always part of a larger axiomatic system .

  3. List of first-order theories - Wikipedia

    en.wikipedia.org/wiki/List_of_first-order_theories

    List or describe a set of sentences in the language L σ, called the axioms of the theory. Give a set of σ-structures, and define a theory to be the set of sentences in L σ holding in all these models. For example, the "theory of finite fields" consists of all sentences in the language of fields that are true in all finite fields.

  4. List of axiomatic systems in logic - Wikipedia

    en.wikipedia.org/wiki/List_of_axiomatic_systems...

    Many different equivalent complete axiom systems have been formulated. They differ in the choice of basic connectives used, which in all cases have to be functionally complete (i.e. able to express by composition all n-ary truth tables), and in the exact complete choice of axioms over the chosen basis of connectives.

  5. Hilbert system - Wikipedia

    en.wikipedia.org/wiki/Hilbert_system

    Hilbert systems are characterized by the use of numerous schemas of logical axioms. An axiom schema is an infinite set of axioms obtained by substituting all formulas of some form into a specific pattern. The set of logical axioms includes not only those axioms generated from this pattern, but also any generalization of one of those axioms.

  6. Axiom of choice - Wikipedia

    en.wikipedia.org/wiki/Axiom_of_choice

    A proof requiring the axiom of choice may establish the existence of an object without explicitly defining the object in the language of set theory. For example, while the axiom of choice implies that there is a well-ordering of the real numbers, there are models of set theory with the axiom of choice in which no individual well-ordering of the ...

  7. Hilbert's program - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_program

    In mathematics, Hilbert's program, formulated by German mathematician David Hilbert in the early 1920s, [1] was a proposed solution to the foundational crisis of mathematics, when early attempts to clarify the foundations of mathematics were found to suffer from paradoxes and inconsistencies.

  8. Foundations of geometry - Wikipedia

    en.wikipedia.org/wiki/Foundations_of_geometry

    In the 1960s a new set of axioms for Euclidean geometry, suitable for American high school geometry courses, was introduced by the School Mathematics Study Group (SMSG), as a part of the New math curricula. This set of axioms follows the Birkhoff model of using the real numbers to gain quick entry into the geometric fundamentals.

  9. Hilbert's axioms - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_axioms

    Old axiom II.5 (Pasch's Axiom) is renumbered as II.4. V.2, the Axiom of Line Completeness, replaced: Axiom of completeness. To a system of points, straight lines, and planes, it is impossible to add other elements in such a manner that the system thus generalized shall form a new geometry obeying all of the five groups of axioms.