When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. List of arbitrary-precision arithmetic software - Wikipedia

    en.wikipedia.org/wiki/List_of_arbitrary...

    dc: "Desktop Calculator" arbitrary-precision RPN calculator that comes standard on most Unix-like systems. KCalc, Linux based scientific calculator; Maxima: a computer algebra system which bignum integers are directly inherited from its implementation language Common Lisp. In addition, it supports arbitrary-precision floating-point numbers ...

  3. Floating-point arithmetic - Wikipedia

    en.wikipedia.org/wiki/Floating-point_arithmetic

    A floating-point system can be used to represent, with a fixed number of digits, numbers of very different orders of magnitude — such as the number of meters between galaxies or between protons in an atom. For this reason, floating-point arithmetic is often used to allow very small and very large real numbers that require fast processing times.

  4. Catastrophic cancellation - Wikipedia

    en.wikipedia.org/wiki/Catastrophic_cancellation

    Subtracting nearby numbers in floating-point arithmetic does not always cause catastrophic cancellation, or even any error—by the Sterbenz lemma, if the numbers are close enough the floating-point difference is exact. But cancellation may amplify errors in the inputs that arose from rounding in other floating-point arithmetic.

  5. Sterbenz lemma - Wikipedia

    en.wikipedia.org/wiki/Sterbenz_lemma

    In floating-point arithmetic, the Sterbenz lemma or Sterbenz's lemma [1] is a theorem giving conditions under which floating-point differences are computed exactly. It is named after Pat H. Sterbenz, who published a variant of it in 1974.

  6. Numeric precision in Microsoft Excel - Wikipedia

    en.wikipedia.org/wiki/Numeric_precision_in...

    Thus the 're-subtracting' of 1 leaves a mantissa ending in '100000000000000' instead of '010111000110010', representing a value of '1.1111111111117289E-4' rounded by Excel to 15 significant digits: '1.11111111111173E-4'. Of course mathematical 1 + x − 1 = x, 'floating point math' is sometimes a little different, that is not to be blamed on ...

  7. Arithmetic underflow - Wikipedia

    en.wikipedia.org/wiki/Arithmetic_underflow

    Arithmetic underflow can occur when the true result of a floating-point operation is smaller in magnitude (that is, closer to zero) than the smallest value representable as a normal floating-point number in the target datatype. [1] Underflow can in part be regarded as negative overflow of the exponent of the floating-point value. For example ...

  8. IEEE 754 - Wikipedia

    en.wikipedia.org/wiki/IEEE_754

    The IEEE Standard for Floating-Point Arithmetic (IEEE 754) is a technical standard for floating-point arithmetic originally established in 1985 by the Institute of Electrical and Electronics Engineers (IEEE). The standard addressed many problems found in the diverse floating-point implementations that made them difficult to use reliably and ...

  9. Subnormal number - Wikipedia

    en.wikipedia.org/wiki/Subnormal_number

    The significand (or mantissa) of an IEEE floating-point number is the part of a floating-point number that represents the significant digits. For a positive normalised number, it can be represented as m 0 . m 1 m 2 m 3 ... m p −2 m p −1 (where m represents a significant digit, and p is the precision) with non-zero m 0 .