Search results
Results From The WOW.Com Content Network
In the most straightforward method, the boundary of the lower whisker is the minimum value of the data set, and the boundary of the upper whisker is the maximum value of the data set. Because of this variability, it is appropriate to describe the convention that is being used for the whiskers and outliers in the caption of the box-plot.
At about the same time, Makarov, [6] and independently, Rüschendorf [7] solved the problem, originally posed by Kolmogorov, of how to find the upper and lower bounds for the probability distribution of a sum of random variables whose marginal distributions, but not their joint distribution, are known.
[6] [7] It is also known as Fréchet-Cramér–Rao or Fréchet-Darmois-Cramér-Rao lower bound. It states that the precision of any unbiased estimator is at most the Fisher information; or (equivalently) the reciprocal of the Fisher information is a lower bound on its variance.
When z ≥ 0, the value that is z standard deviations above the mean has a lower bound + (+), For example, the value that is z = 1 standard deviation above the mean is always greater than or equal to Q ( p = 0.5) , the median, and the value that is z = 2 standard deviations above the mean is always greater than or equal to Q ( p = 0.8) , the ...
It is then compared to the rest of the matrix to produce candidate red upper and blue lower boundaries. The algorithm then selects the boundary which is known to exclude the global matrix median, by considering the number of entries excluded by this boundary (which is equivalent to considering the rank of the yellow entry).
The lower fence is the "lower limit" and the upper fence is the "upper limit" of data, and any data lying outside these defined bounds can be considered an outlier. The fences provide a guideline by which to define an outlier, which may be defined in other ways. The fences define a "range" outside which an outlier exists; a way to picture this ...
In Bayesian statistics, a credible interval is an interval used to characterize a probability distribution. It is defined such that an unobserved parameter value has a particular probability γ {\displaystyle \gamma } to fall within it.
In probability theory and statistics, a copula is a multivariate cumulative distribution function for which the marginal probability distribution of each variable is uniform on the interval [0, 1]. Copulas are used to describe/model the dependence (inter-correlation) between random variables . [ 1 ]