Search results
Results From The WOW.Com Content Network
Asymmetric hydrogenation is a chemical reaction that adds two atoms of hydrogen to a target (substrate) molecule with three-dimensional spatial selectivity.Critically, this selectivity does not come from the target molecule itself, but from other reagents or catalysts present in the reaction.
The rule states that with the addition of a protic acid HX or other polar reagent to an asymmetric alkene, the acid hydrogen (H) or electropositive part gets attached to the carbon with more hydrogen substituents, and the halide (X) group or electronegative part gets attached to the carbon with more alkyl substituents. This is in contrast to ...
Enantioselective synthesis, also called asymmetric synthesis, [1] is a form of chemical synthesis.It is defined by IUPAC as "a chemical reaction (or reaction sequence) in which one or more new elements of chirality are formed in a substrate molecule and which produces the stereoisomeric (enantiomeric or diastereomeric) products in unequal amounts."
The Juliá–Colonna epoxidation is an asymmetric poly-leucine catalyzed nucleophilic epoxidation of electron deficient olefins in a triphasic system.The reaction was reported by Sebastian Juliá at the Chemical Institute of Sarriá in 1980, [1] with further elaboration by both Juliá and Stefano Colonna (Istituto di Chimica Industriale dell'Università, Milan, Italy).
Asymmetric epoxidation is often feasible. [4] One named reaction is the Jacobsen epoxidation, which uses manganese-salen complex as a chiral catalyst and NaOCl as the oxidant. The Sharpless epoxidation using chiral N-heterocyclic ligands and osmium tetroxide. Instead of asymmetric epoxidation, alkenes are susceptible to asymmetric dihydroxylation.
The Heck reaction is the palladium-catalyzed coupling of an aryl or alkenyl halide with an alkene to form a substituted alkene. [2] Intramolecular variants of the reaction may be used to generate cyclic products containing endo or exo double bonds. Ring sizes produced by the intramolecular Heck reaction range from four to twenty-seven atoms.
K. Barry Sharpless was the first to develop a general, reliable enantioselective alkene dihydroxylation, referred to as the Sharpless asymmetric dihydroxylation (SAD). Low levels of OsO 4 are combined with a stoichiometric ferricyanide oxidant in the presence of chiral nitrogenous ligands to create an asymmetric environment around the oxidant.
However, as is the case with the overall mechanism, the pathway of alkene approach is also debated. [8] One proposed substrate approach pathway - Note: Substrates are perpendicular to the plane of the catalyst. The ease with which Jacobsen's catalyst selectively epoxidizes cis-alkenes has been difficult to replicate with terminal and trans ...