Search results
Results From The WOW.Com Content Network
In most cases this leads to natural circulation: the ability of a fluid in a system to circulate continuously under gravity, with transfer of heat energy. The driving force for natural convection is gravity. In a column of fluid, pressure increases with depth from the weight of the overlying fluid.
In physics, sound energy is a form of energy that can be heard by living things. Only those waves that have a frequency of 16 Hz to 20 kHz are audible to humans. However, this range is an average and will slightly change from individual to individual.
The air-water interface is now endowed with a surface roughness due to the capillary-gravity waves, and a second phase of wave growth takes place. A wave established on the surface either spontaneously as described above, or in laboratory conditions, interacts with the turbulent mean flow in a manner described by Miles. [6]
Convection (or convective heat transfer) is the transfer of heat from one place to another due to the movement of fluid. Although often discussed as a distinct method of heat transfer, convective heat transfer involves the combined processes of conduction (heat diffusion) and advection (heat transfer by bulk fluid flow ).
The Boussinesq approximation is applied to problems where the fluid varies in temperature (or composition) from one place to another, driving a flow of fluid and heat transfer (or mass transfer [1]). The fluid satisfies conservation of mass , conservation of momentum and conservation of energy .
for sound-like behaviour or second sound. The second sound thus behaves as oscillations of the local number of quasiparticles (or of the local energy carried by these particles). Contrary to the normal sound where energy is related to pressure and temperature, in a crystal the local energy density is purely a function of the temperature.
The crests overtake the troughs until the leading edge of the wave forms a vertical face and spills over to form a turbulent shock (a breaker) that dissipates the wave's energy as sound and heat. Similar phenomena affect strong sound waves in gas or plasma, due to the dependence of the sound speed on temperature and pressure. Strong waves heat ...
For a certain water depth, surface gravity waves – i.e. waves occurring at the air–water interface and gravity as the only force restoring it to flatness – propagate faster with increasing wavelength. On the other hand, for a given (fixed) wavelength, gravity waves in deeper water have a larger phase speed than in shallower water. [1]