When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Knapsack problem - Wikipedia

    en.wikipedia.org/wiki/Knapsack_problem

    In particular, if the are nonnegative but not integers, we could still use the dynamic programming algorithm by scaling and rounding (i.e. using fixed-point arithmetic), but if the problem requires fractional digits of precision to arrive at the correct answer, will need to be scaled by , and the DP algorithm will require () space and () time.

  3. List of knapsack problems - Wikipedia

    en.wikipedia.org/wiki/List_of_knapsack_problems

    The knapsack problem is one of the most studied problems in combinatorial optimization, with many real-life applications. For this reason, many special cases and generalizations have been examined. For this reason, many special cases and generalizations have been examined.

  4. Fully polynomial-time approximation scheme - Wikipedia

    en.wikipedia.org/wiki/Fully_polynomial-time...

    1. The 0-1 knapsack problem is benevolent. Here, we have a=2: each input is a 2-vector (weight, value). There is a DP with b=2: each state encodes (current weight, current value). There are two transition functions: f 1 corresponds to adding the next input item, and f 2 corresponds to not adding it.

  5. Change-making problem - Wikipedia

    en.wikipedia.org/wiki/Change-making_problem

    The probabilistic convolution tree-based dynamic programming method also efficiently solves the probabilistic generalization of the change-making problem, where uncertainty or fuzziness in the goal amount W makes it a discrete distribution rather than a fixed quantity, where the value of each coin is likewise permitted to be fuzzy (for instance ...

  6. List of NP-complete problems - Wikipedia

    en.wikipedia.org/wiki/List_of_NP-complete_problems

    Knapsack problem, quadratic knapsack problem, and several variants [2] [3]: MP9 Some problems related to Multiprocessor scheduling; Numerical 3-dimensional matching [3]: SP16 Open-shop scheduling; Partition problem [2] [3]: SP12 Quadratic assignment problem [3]: ND43 Quadratic programming (NP-hard in some cases, P if convex)

  7. Bin packing problem - Wikipedia

    en.wikipedia.org/wiki/Bin_packing_problem

    The bin packing problem can also be seen as a special case of the cutting stock problem. When the number of bins is restricted to 1 and each item is characterized by both a volume and a value, the problem of maximizing the value of items that can fit in the bin is known as the knapsack problem.

  8. Dynamic programming - Wikipedia

    en.wikipedia.org/wiki/Dynamic_programming

    If the solution to any problem can be formulated recursively using the solution to its sub-problems, and if its sub-problems are overlapping, then one can easily memoize or store the solutions to the sub-problems in a table (often an array or hashtable in practice). Whenever we attempt to solve a new sub-problem, we first check the table to see ...

  9. Weak NP-completeness - Wikipedia

    en.wikipedia.org/wiki/Weak_NP-completeness

    For example, the NP-hard knapsack problem can be solved by a dynamic programming algorithm requiring a number of steps polynomial in the size of the knapsack and the number of items (assuming that all data are scaled to be integers); however, the runtime of this algorithm is exponential time since the input sizes of the objects and knapsack are ...