Ads
related to: fermat little theorem problems
Search results
Results From The WOW.Com Content Network
Fermat's little theorem is the basis for the Fermat primality test and is one of the fundamental results of elementary number theory. The theorem is named after Pierre de Fermat, who stated it in 1640. It is called the "little theorem" to distinguish it from Fermat's Last Theorem. [3]
Some of the proofs of Fermat's little theorem given below depend on two simplifications. The first is that we may assume that a is in the range 0 ≤ a ≤ p − 1 . This is a simple consequence of the laws of modular arithmetic ; we are simply saying that we may first reduce a modulo p .
Fermat's little theorem states that if p is prime and a is not divisible by p, then a p − 1 ≡ 1 ( mod p ) . {\displaystyle a^{p-1}\equiv 1{\pmod {p}}.} If one wants to test whether p is prime, then we can pick random integers a not divisible by p and see whether the congruence holds.
Chapter 5 generalizes Fermat's little theorem from numbers to polynomials, and introduces a randomized primality test based in this generalization. Chapter 6 provides the key mathematical results behind the correctness of the AKS primality test, and chapter 7 describes the test itself. [5]
Fermat's last theorem Fermat's last theorem, one of the most famous and difficult to prove theorems in number theory, states that for any integer n > 2, the equation a n + b n = c n has no positive integer solutions. Fermat's little theorem Fermat's little theorem field extension A field extension L/K is a pair of fields K and L such that K is ...
The false statement that all numbers that pass the Fermat primality test for base 2 are prime is called the Chinese hypothesis. The smallest base-2 Fermat pseudoprime is 341. It is not a prime, since it equals 11·31, but it satisfies Fermat's little theorem: 2 340 ≡ 1 (mod 341) and thus passes the Fermat primality test for the base 2.
Linear congruence theorem; Method of successive substitution; Chinese remainder theorem; Fermat's little theorem. Proofs of Fermat's little theorem; Fermat quotient; Euler's totient function. Noncototient; Nontotient; Euler's theorem; Wilson's theorem; Primitive root modulo n. Multiplicative order; Discrete logarithm; Quadratic residue. Euler's ...
Euler proved Newton's identities, Fermat's little theorem, Fermat's theorem on sums of two squares, and made distinct contributions to the Lagrange's four-square theorem. He also invented the totient function φ(n) which assigns to a positive integer n the number of positive integers less than n and coprime to n.