Search results
Results From The WOW.Com Content Network
N-Bromosuccinimide or NBS is a chemical reagent used in radical substitution, electrophilic addition, and electrophilic substitution reactions in organic chemistry. NBS can be a convenient source of Br • , the bromine radical.
The Wohl–Ziegler reaction [1] [2] is a chemical reaction that involves the allylic or benzylic bromination of hydrocarbons using an N-bromosuccinimide and a radical initiator. [3] Best yields are achieved with N-bromosuccinimide in carbon tetrachloride solvent. Several reviews have been published. [4] [5]
Structure of N-bromosuccinimide, a common brominating reagent in organic chemistry. Like the other carbon–halogen bonds, the C–Br bond is a common functional group that forms part of core organic chemistry. Formally, compounds with this functional group may be considered organic derivatives of the bromide anion.
Free-radical reactions depend on one or more relatively weak bonds in a reagent. Under reaction conditions (typically heat or light), some weak bonds homolyse into radicals, which then induce further decomposition in their compatriots before recombination. Different mechanisms typically apply to reagents without such a weak bond.
N-Iodosuccinimide (NIS) is a reagent used in organic chemistry for the iodination of alkenes and as a mild oxidant. [ 2 ] NIS is the iodine analog of N -chlorosuccinimide (NCS) and N -bromosuccinimide (NBS) which are used for similar applications.
Reagents are "substances or compounds that are added to a system in order to bring about a chemical reaction or are added to see if a reaction occurs." [1] Some reagents are just a single element. However, most processes require reagents made of chemical compounds. Some of the most common ones used widely for specific reactive functions are ...
N-Chlorosuccinimide (NCS) is the organic compound with the formula C 2 H 4 (CO) 2 NCl. This white solid is used for chlorinations. [2] It is also used as a mild oxidant. [3] NCS is related to succinimide, but with N-Cl in place of N-H. The N–Cl bond is highly reactive, and NCS functions as a source of "Cl +".
The reaction mechanism of Corey–Kim oxidation Under Corey–Kim conditions allylic and benzylic alcohols have a tendency to evolve to the corresponding allyl and benzyl chlorides unless the alcohol activation is very quickly followed by addition of triethylamine .