Search results
Results From The WOW.Com Content Network
There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.
From this point of view the kinematics equations can be used in two different ways. The first called forward kinematics uses specified values for the joint parameters to compute the end-effector position and orientation. The second called inverse kinematics uses the position and orientation of the end-effector to compute the joint parameters ...
Kinematics is often described as applied geometry, where the movement of a mechanical system is described using the rigid transformations of Euclidean geometry. The coordinates of points in a plane are two-dimensional vectors in R 2 (two dimensional space). Rigid transformations are those that preserve the distance between any two
Snap, [6] or jounce, [2] is the fourth derivative of the position vector with respect to time, or the rate of change of the jerk with respect to time. [4] Equivalently, it is the second derivative of acceleration or the third derivative of velocity, and is defined by any of the following equivalent expressions: = ȷ = = =.
Important theorems of screw theory include: the transfer principle proves that geometric calculations for points using vectors have parallel geometric calculations for lines obtained by replacing vectors with screws; [1] Chasles' theorem proves that any change between two rigid object poses can be performed by a single screw; Poinsot's theorem ...
Displacement d (yellow arrow) and moment m (green arrow) of two points x,y on a line (in red). A line L in 3-dimensional Euclidean space is determined by two distinct points that it contains, or by two distinct planes that contain it (a plane-plane intersection).
In geometry and mechanics, a displacement is a vector whose length is the shortest distance from the initial to the final position of a point P undergoing motion. [1] It quantifies both the distance and direction of the net or total motion along a straight line from the initial position to the final position of the point trajectory .
P is the pole of the displacement of A 1 B 1 to A 2 B 2. Two positions: As an example consider a task defined by two positions of the coupler link, as shown in the figure. Choose two points A and B in the body, so its two positions define the segments A 1 B 1 and A 2 B 2.