Ad
related to: unique factorization domain example problems
Search results
Results From The WOW.Com Content Network
Formally, a unique factorization domain is defined to be an integral domain R in which every non-zero element x of R which is not a unit can be written as a finite product of irreducible elements p i of R: x = p 1 p 2 ⋅⋅⋅ p n with n ≥ 1. and this representation is unique in the following sense: If q 1, ..., q m are irreducible elements ...
As for every unique factorization domain, every Gaussian integer may be factored as a product of a unit and Gaussian primes, and this factorization is unique up to the order of the factors, and the replacement of any prime by any of its associates (together with a corresponding change of the unit factor).
In the case of coefficients in a unique factorization domain R, "rational numbers" must be replaced by "field of fractions of R". This implies that, if R is either a field, the ring of integers, or a unique factorization domain, then every polynomial ring (in one or several indeterminates) over R is a unique factorization domain. Another ...
As the positive integers less than s have been supposed to have a unique prime factorization, must occur in the factorization of either or Q. The latter case is impossible, as Q , being smaller than s , must have a unique prime factorization, and p 1 {\displaystyle p_{1}} differs from every q j . {\displaystyle q_{j}.}
There is a unique ring homomorphism φ from Z[α] to Z/nZ that maps α to m. For simplicity, we'll assume that Z[α] is a unique factorization domain; the algorithm can be modified to work when it isn't, but then there are some additional complications. Next, we set up two parallel factor bases, one in Z[α] and one in Z.
Then the factorization problem is reduced to factorize separately the content and the primitive part. Content and primitive part may be generalized to polynomials over the rational numbers, and, more generally, to polynomials over the field of fractions of a unique factorization domain.
A Dedekind domain can also be characterized in terms of homological algebra: an integral domain is a Dedekind domain if and only if it is a hereditary ring; that is, every submodule of a projective module over it is projective. Similarly, an integral domain is a Dedekind domain if and only if every divisible module over it is injective. [3]
1 Examples. 2 References. 3 Notes. ... In mathematics, a noncommutative unique factorization domain is a noncommutative ring with the unique factorization property.