Search results
Results From The WOW.Com Content Network
The density of surface seawater ranges from about 1020 to 1029 kg/m 3, depending on the temperature and salinity. At a temperature of 25 °C, the salinity of 35 g/kg and 1 atm pressure, the density of seawater is 1023.6 kg/m 3. [7] [8] Deep in the ocean, under high pressure, seawater can reach a density of 1050 kg/m 3 or higher. The density of ...
TEOS-10 (Thermodynamic Equation of Seawater - 2010) is the international standard for the use and calculation of the thermodynamic properties of seawater, humid air and ice. It supersedes the former standard EOS-80 (Equation of State of Seawater 1980). [ 1 ]
Sigma-t is a quantity used in oceanography to measure the density of seawater at a given temperature. [1] σ T is defined as ρ(S,T)-1000 kg m −3, where ρ(S,T) is the density of a sample of seawater at temperature T and salinity S, measured in kg m −3, at standard atmospheric pressure.
Standard sea-level conditions (SSL), [1] also known as sea-level standard (SLS), defines a set of atmospheric conditions for physical calculations.The term "standard sea level" is used to indicate that values of properties are to be taken to be the same as those standard at sea level, and is done to define values for use in general calculations.
Temperature and salinity combine to determine the potential density of seawater; contours of constant potential density are often shown in T-S diagrams. Each contour is known as an isopycnal, or a region of constant density. These isopycnals appear curved because of the nonlinearity of the equation of state of seawater.
Τhe haline contraction coefficient is defined as: [1] = |, where ρ is the density of a water parcel in the ocean and S is the absolute salinity.The subscripts Θ and p indicate that β is defined at constant potential temperature Θ and constant pressure p.
To calculate the weight of the displaced water, it is necessary to know its density. Seawater (1,025 kg/m 3) is more dense than fresh water (1,000 kg/m 3); [5] so a ship will ride higher in salt water than in fresh. The density of water also varies with temperature.
Sea water is 827 times denser than air. Due to the higher density of sea water (1,030 kg m −3) than air (1.2 kg m −3), the force exerted by the same velocity on an organism is 827 times stronger in the ocean.