Search results
Results From The WOW.Com Content Network
Two angles whose sum is π/2 radians (90 degrees) are complementary. In the diagram, the angles at vertices A and B are complementary, so we can exchange a and b, and change θ to π/2 − θ, obtaining: (/) =
The values of sine and cosine of 30 and 60 degrees are derived by analysis of the equilateral triangle. In an equilateral triangle, the 3 angles are equal and sum to 180°, therefore each corner angle is 60°. Bisecting one corner, the special right triangle with angles 30-60-90 is obtained.
In order to directly prove a conditional statement of the form "If p, then q", it suffices to consider the situations in which the statement p is true. Logical deduction is employed to reason from assumptions to conclusion. The type of logic employed is almost invariably first-order logic, employing the quantifiers for all and there exists.
For example, direct proof can be used to prove that the sum of two even integers is always even: Consider two even integers x and y. Since they are even, they can be written as x = 2a and y = 2b, respectively, for some integers a and b. Then the sum is x + y = 2a + 2b = 2(a+b). Therefore x+y has 2 as a factor and, by definition, is even. Hence ...
The law of tangents can be used to compute the angles of a triangle in which two sides a and b and the enclosed angle γ are given. From tan 1 2 ( α − β ) = a − b a + b tan 1 2 ( α + β ) = a − b a + b cot 1 2 γ {\displaystyle \tan {\tfrac {1}{2}}(\alpha -\beta )={\frac {a-b}{a+b}}\tan {\tfrac {1}{2}}(\alpha +\beta ...
The base case (or initial case): prove that the statement holds for 0, or 1. The induction step (or inductive step, or step case): prove that for every n, if the statement holds for n, then it holds for n + 1. In other words, assume that the statement holds for some arbitrary natural number n, and prove that the statement holds for n + 1.
The classic proof that the square root of 2 is irrational is a refutation by contradiction. [11] Indeed, we set out to prove the negation ¬ ∃ a, b ∈ . a/b = √ 2 by assuming that there exist natural numbers a and b whose ratio is the square root of two, and derive a contradiction.
Each step increases the number of consecutive pairs in the cycle that are adjacent in the graph, by one or two pairs (depending on whether v j and v j + 1 are already adjacent), so the outer loop can only happen at most n times before the algorithm terminates, where n is the number of vertices in the given graph.