Ads
related to: fermat's last theorem formula pdf file free download 64 bit
Search results
Results From The WOW.Com Content Network
Weisstein, Eric W. "Fermat's Last Theorem". MathWorld. O'Connor, John J.; Robertson, Edmund F. (1996), Fermat's last theorem, MacTutor History of Mathematical Topics, archived from the original on 2013-01-16 University of St Andrews. "The Proof". PBS. The title of one edition of the PBS television series NOVA, discusses Andrew Wiles's effort to ...
In number theory, Fermat's Last Theorem (sometimes called Fermat's conjecture, especially in older texts) states that no three positive integers a, b, and c satisfy the equation a n + b n = c n for any integer value of n greater than 2. The cases n = 1 and n = 2 have been known since antiquity to have infinitely many solutions. [1]
Fermat's Last Theorem, formulated in 1637, states that no three positive integers a, b, and c can satisfy the equation + = if n is an integer greater than two (n > 2).. Over time, this simple assertion became one of the most famous unproved claims in mathematics.
In mathematics, a proof by infinite descent, also known as Fermat's method of descent, is a particular kind of proof by contradiction [1] used to show that a statement cannot possibly hold for any number, by showing that if the statement were to hold for a number, then the same would be true for a smaller number, leading to an infinite descent and ultimately a contradiction. [2]
Kummer improved this further in 1857 by showing that for the "first case" of Fermat's Last Theorem (see Sophie Germain's theorem) it is sufficient to establish that either (p, p − 3) or (p, p − 5) fails to be an irregular pair. ((p, 2k) is an irregular pair when p is irregular due to a certain condition described below being realized at 2k.)
The conjecture was formulated in 1993 by Andrew Beal, a banker and amateur mathematician, while investigating generalizations of Fermat's Last Theorem. [1] [2] Since 1997, Beal has offered a monetary prize for a peer-reviewed proof of this conjecture or a counterexample. [3] The value of the prize has increased several times and is currently $1 ...