When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Rate equation - Wikipedia

    en.wikipedia.org/wiki/Rate_equation

    For zero-order reactions, the reaction rate is independent of the concentration of a reactant, so that changing its concentration has no effect on the rate of the reaction. Thus, the concentration changes linearly with time. The rate law for zero order reaction is [] = [] =,

  3. Steady state (chemistry) - Wikipedia

    en.wikipedia.org/wiki/Steady_state_(chemistry)

    The steady state approximation, [1] occasionally called the stationary-state approximation or Bodenstein's quasi-steady state approximation, involves setting the rate of change of a reaction intermediate in a reaction mechanism equal to zero so that the kinetic equations can be simplified by setting the rate of formation of the intermediate equal to the rate of its destruction.

  4. Reaction progress kinetic analysis - Wikipedia

    en.wikipedia.org/wiki/Reaction_progress_kinetic...

    b) The straight portion of the graph for substrate concentration over time is indicative of a zero-order dependence on substrate for most of the reaction, but the curve at low [A] is indicative of a change to (in this case) a first-order dependence on [A].

  5. Michaelis–Menten kinetics - Wikipedia

    en.wikipedia.org/wiki/Michaelis–Menten_kinetics

    Determining the parameters of the Michaelis–Menten equation typically involves running a series of enzyme assays at varying substrate concentrations , and measuring the initial reaction rates , i.e. the reaction rates are measured after a time period short enough for it to be assumed that the enzyme-substrate complex has formed, but that the ...

  6. Chemical kinetics - Wikipedia

    en.wikipedia.org/wiki/Chemical_kinetics

    After van 't Hoff, chemical kinetics dealt with the experimental determination of reaction rates from which rate laws and rate constants are derived. Relatively simple rate laws exist for zero order reactions (for which reaction rates are independent of concentration), first order reactions, and second order reactions, and can be derived for ...

  7. Rate-determining step - Wikipedia

    en.wikipedia.org/wiki/Rate-determining_step

    As an example, consider the gas-phase reaction NO 2 + CO → NO + CO 2.If this reaction occurred in a single step, its reaction rate (r) would be proportional to the rate of collisions between NO 2 and CO molecules: r = k[NO 2][CO], where k is the reaction rate constant, and square brackets indicate a molar concentration.

  8. Half-life - Wikipedia

    en.wikipedia.org/wiki/Half-life

    [] = [] ⁡ as time progresses until it reaches zero, and the half-life will be constant, independent of concentration. The time t ½ for [A] to decrease from [A] 0 to ⁠ 1 / 2 ⁠ [A] 0 in a first-order reaction is given by the following equation: [] / = [] ⁡ (/) It can be solved for / = ⁡ ([] / []) = ⁡ = ⁡ For a first-order reaction ...

  9. Reaction rate - Wikipedia

    en.wikipedia.org/wiki/Reaction_rate

    Iron rusting has a low reaction rate. This process is slow. Wood combustion has a high reaction rate. This process is fast. The reaction rate or rate of reaction is the speed at which a chemical reaction takes place, defined as proportional to the increase in the concentration of a product per unit time and to the decrease in the concentration of a reactant per unit time. [1]