Search results
Results From The WOW.Com Content Network
An example of Neyman–Pearson hypothesis testing (or null hypothesis statistical significance testing) can be made by a change to the radioactive suitcase example. If the "suitcase" is actually a shielded container for the transportation of radioactive material, then a test might be used to select among three hypotheses: no radioactive source ...
Statistical tests are used to test the fit between a hypothesis and the data. [1] [2] Choosing the right statistical test is not a trivial task. [1] The choice of the test depends on many properties of the research question. The vast majority of studies can be addressed by 30 of the 100 or so statistical tests in use. [3] [4] [5]
The term significance does not imply importance here, and the term statistical significance is not the same as research significance, theoretical significance, or practical significance. [1] [2] [18] [19] For example, the term clinical significance refers to the practical importance of a treatment effect. [20]
T(y) is the value of the test statistic for an outcome y, with larger values of T representing cases which notionally represent greater departures from the null hypothesis, and where the sum ranges over all outcomes y (including the observed one) that have the same value of the test statistic obtained for the observed sample x, or a larger one.
The value q s is the sample's test statistic. (The notation | x | means the absolute value of x; the magnitude of x with the sign set to +, regardless of the original sign of x.) This q s test statistic can then be compared to a q value for the chosen significance level α from a table of the studentized range distribution.
If the null hypothesis is true, the likelihood ratio test, the Wald test, and the Score test are asymptotically equivalent tests of hypotheses. [8] [9] When testing nested models, the statistics for each test then converge to a Chi-squared distribution with degrees of freedom equal to the difference in degrees of freedom in the two models.
Higher power requires larger sample sizes. Statistical power may depend on a number of factors. Some factors may be particular to a specific testing situation, but in normal use, power depends on the following three aspects that can be potentially controlled by the practitioner: the test itself and the statistical significance criterion used
Test statistic is a quantity derived from the sample for statistical hypothesis testing. [1] A hypothesis test is typically specified in terms of a test statistic, considered as a numerical summary of a data-set that reduces the data to one value that can be used to perform the hypothesis test.