When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Mathematical proof - Wikipedia

    en.wikipedia.org/wiki/Mathematical_proof

    For example, we can prove by induction that all positive integers of the form 2n − 1 are odd. Let P(n) represent "2n − 1 is odd": (i) For n = 1, 2n − 1 = 2(1) − 1 = 1, and 1 is odd, since it leaves a remainder of 1 when divided by 2. Thus P(1) is true.

  3. Principia Mathematica - Wikipedia

    en.wikipedia.org/wiki/Principia_Mathematica

    The ramified type (τ 1,...,τ m |σ 1,...,σ n) can be modeled as the product of the type (τ 1,...,τ m,σ 1,...,σ n) with the set of sequences of n quantifiers (∀ or ∃) indicating which quantifier should be applied to each variable σ i. (One can vary this slightly by allowing the σs to be quantified in any order, or allowing them to ...

  4. Mathematical induction - Wikipedia

    en.wikipedia.org/wiki/Mathematical_induction

    The base case (or initial case): prove that the statement holds for 0, or 1. The induction step (or inductive step, or step case): prove that for every n, if the statement holds for n, then it holds for n + 1. In other words, assume that the statement holds for some arbitrary natural number n, and prove that the statement holds for n + 1.

  5. Cantor's theorem - Wikipedia

    en.wikipedia.org/wiki/Cantor's_theorem

    He showed that if f is a function defined on X whose values are 2-valued functions on X, then the 2-valued function G(x) = 1 − f(x)(x) is not in the range of f. Bertrand Russell has a very similar proof in Principles of Mathematics (1903, section 348), where he shows that there are more propositional functions than objects.

  6. Proofs involving the addition of natural numbers - Wikipedia

    en.wikipedia.org/wiki/Proofs_involving_the...

    We prove commutativity (a + b = b + a) by applying induction on the natural number b. First we prove the base cases b = 0 and b = S(0) = 1 (i.e. we prove that 0 and 1 commute with everything). The base case b = 0 follows immediately from the identity element property (0 is an additive identity), which has been proved above: a + 0 = a = 0 + a.

  7. Collatz conjecture - Wikipedia

    en.wikipedia.org/wiki/Collatz_conjecture

    So, instead of proving that all positive integers eventually lead to 1, we can try to prove that 1 leads backwards to all positive integers. For any integer n, n ≡ 1 (mod 2) if and only if 3n + 1 ≡ 4 (mod 6). Equivalently, ⁠ n − 1 / 3 ⁠ ≡ 1 (mod 2) if and only if n ≡ 4 (mod 6).

  8. Lemma (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Lemma_(mathematics)

    In mathematics and other fields, [a] a lemma (pl.: lemmas or lemmata) is a generally minor, proven proposition which is used to prove a larger statement. For that reason, it is also known as a "helping theorem" or an "auxiliary theorem".

  9. Fermat number - Wikipedia

    en.wikipedia.org/wiki/Fermat_number

    If 2 k + 1 is prime and k > 0, then k itself must be a power of 2, [1] so 2 k + 1 is a Fermat number; such primes are called Fermat primes. As of 2023 [update] , the only known Fermat primes are F 0 = 3 , F 1 = 5 , F 2 = 17 , F 3 = 257 , and F 4 = 65537 (sequence A019434 in the OEIS ).