Search results
Results From The WOW.Com Content Network
In biochemistry and metabolism, beta oxidation (also β-oxidation) is the catabolic process by which fatty acid molecules are broken down in the cytosol in prokaryotes and in the mitochondria in eukaryotes to generate acetyl-CoA.
The enzyme medium-chain acyl-CoA dehydrogenase (MCAD) is responsible for the dehydrogenation step of fatty acids with chain lengths between 6 and 12 carbons as they undergo beta-oxidation in the mitochondria. Fatty acid beta-oxidation provides energy after the body has used up its stores of glucose and glycogen.
The resulting acyl-CoA cross the mitochondria membrane and enter the process of beta oxidation. The main products of the beta oxidation pathway are acetyl-CoA (which is used in the citric acid cycle to produce energy), NADH and FADH. [16] The process of beta oxidation requires the following enzymes: acyl-CoA dehydrogenase, enoyl-CoA hydratase ...
This energy is transferred to NAD + by reduction to NADH, as part of beta oxidation, glycolysis, and the citric acid cycle. In eukaryotes the electrons carried by the NADH that is produced in the cytoplasm are transferred into the mitochondrion (to reduce mitochondrial NAD +) by mitochondrial shuttles, such as the malate-aspartate shuttle. [59]
Schematic demonstrating mitochondrial fatty acid beta-oxidation and effects of long-chain 3-hydroxyacyl-coenzyme A dehydrogenase deficiency, LCHAD deficiency. Mitochondrial trifunctional protein (MTP) is a protein attached to the inner mitochondrial membrane which catalyzes three out of the four steps in beta oxidation.
The carnitine palmitoyltransferase system is an essential step in the beta-oxidation of long chain fatty acids. This transfer system is necessary because, while fatty acids are activated (in the form of a thioester linkage to coenzyme A) on the outer mitochondrial membrane, the activated fatty acids must be oxidized within the mitochondrial matrix
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more
Ketone bodies are water-soluble molecules or compounds that contain the ketone groups produced from fatty acids by the liver (ketogenesis). [1] [2] Ketone bodies are readily transported into tissues outside the liver, where they are converted into acetyl-CoA (acetyl-Coenzyme A) – which then enters the citric acid cycle (Krebs cycle) and is oxidized for energy.