Search results
Results From The WOW.Com Content Network
scikit-learn (formerly scikits.learn and also known as sklearn) is a free and open-source machine learning library for the Python programming language. [3] It features various classification, regression and clustering algorithms including support-vector machines, random forests, gradient boosting, k-means and DBSCAN, and is designed to interoperate with the Python numerical and scientific ...
In fact, it can be shown that the unconditional analysis of matched pair data results in an estimate of the odds ratio which is the square of the correct, conditional one. [2] In addition to tests based on logistic regression, several other tests existed before conditional logistic regression for matched data as shown in related tests. However ...
Because it uses multiway splits by default, it needs rather large sample sizes to work effectively, since with small sample sizes the respondent groups can quickly become too small for reliable analysis. [citation needed] One important advantage of CHAID over alternatives such as multiple regression is that it is non-parametric. [citation needed]
Related models and techniques are, among others, latent semantic indexing, independent component analysis, probabilistic latent semantic indexing, non-negative matrix factorization, and Gamma-Poisson distribution. The LDA model is highly modular and can therefore be easily extended. The main field of interest is modeling relations between topics.
The scikit-multiflow library is implemented under the open research principles and is currently distributed under the BSD 3-clause license. scikit-multiflow is mainly written in Python, and some core elements are written in Cython for performance. scikit-multiflow integrates with other Python libraries such as Matplotlib for plotting, scikit-learn for incremental learning methods [4 ...
This means that, just as in the log-linear model, only K − 1 of the coefficient vectors are identifiable, and the last one can be set to an arbitrary value (e.g. 0). Actually finding the values of the above probabilities is somewhat difficult, and is a problem of computing a particular order statistic (the first, i.e. maximum) of a set of values.
In machine learning, Platt scaling or Platt calibration is a way of transforming the outputs of a classification model into a probability distribution over classes.The method was invented by John Platt in the context of support vector machines, [1] replacing an earlier method by Vapnik, but can be applied to other classification models. [2]
Ridge regression is a method of estimating the coefficients of multiple-regression models in scenarios where the independent variables are highly correlated. [1] It has been used in many fields including econometrics, chemistry, and engineering. [2]