When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Bag-of-words model - Wikipedia

    en.wikipedia.org/wiki/Bag-of-words_model

    Despite this lack of syntax or grammar, BoW representation is fast and may be sufficient for simple tasks that do not require word order. For instance, for document classification, if the words "stocks" "trade" "investors" appears multiple times, then the text is likely a financial report, even though it would be insufficient to distinguish between

  3. fastText - Wikipedia

    en.wikipedia.org/wiki/FastText

    fastText is a library for learning of word embeddings and text classification created by Facebook's AI Research (FAIR) lab. [3] [4] [5] [6] The model allows one to ...

  4. Word2vec - Wikipedia

    en.wikipedia.org/wiki/Word2vec

    IWE combines Word2vec with a semantic dictionary mapping technique to tackle the major challenges of information extraction from clinical texts, which include ambiguity of free text narrative style, lexical variations, use of ungrammatical and telegraphic phases, arbitrary ordering of words, and frequent appearance of abbreviations and acronyms ...

  5. List of text mining software - Wikipedia

    en.wikipedia.org/wiki/List_of_text_mining_software

    Mathematica – provides built in tools for text alignment, pattern matching, clustering and semantic analysis. See Wolfram Language, the programming language of Mathematica. MATLAB offers Text Analytics Toolbox for importing text data, converting it to numeric form for use in machine and deep learning, sentiment analysis and classification ...

  6. Multi-label classification - Wikipedia

    en.wikipedia.org/wiki/Multi-label_classification

    In machine learning, multi-label classification or multi-output classification is a variant of the classification problem where multiple nonexclusive labels may be assigned to each instance. Multi-label classification is a generalization of multiclass classification , which is the single-label problem of categorizing instances into precisely ...

  7. Document classification - Wikipedia

    en.wikipedia.org/wiki/Document_classification

    Content-based classification is classification in which the weight given to particular subjects in a document determines the class to which the document is assigned. It is, for example, a common rule for classification in libraries, that at least 20% of the content of a book should be about the class to which the book is assigned. [1]

  8. List of text mining methods - Wikipedia

    en.wikipedia.org/wiki/List_of_text_mining_methods

    Different text mining methods are used based on their suitability for a data set. Text mining is the process of extracting data from unstructured text and finding patterns or relations. Below is a list of text mining methodologies. Centroid-based Clustering: Unsupervised learning method. Clusters are determined based on data points. [1]

  9. Rocchio algorithm - Wikipedia

    en.wikipedia.org/wiki/Rocchio_algorithm

    Therefore, traditional values for the algorithm's weights (, , ) in Rocchio classification are typically around = 1, = 0.8, and = 0.1. Modern information retrieval systems have moved towards eliminating the non-related documents by setting c = 0 and thus only accounting for related documents.