When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Category of sets - Wikipedia

    en.wikipedia.org/wiki/Category_of_sets

    The power object of a set A is given by its power set, and the exponential object of the sets A and B is given by the set of all functions from A to B. Set is thus a topos (and in particular cartesian closed and exact in the sense of Barr). Set is not abelian, additive nor preadditive. Every non-empty set is an injective object in Set.

  3. Function (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Function_(mathematics)

    Formally, a function of n variables is a function whose domain is a set of n-tuples. [note 3] For example, multiplication of integers is a function of two variables, or bivariate function, whose domain is the set of all ordered pairs (2-tuples) of integers, and whose codomain is the set of

  4. Equinumerosity - Wikipedia

    en.wikipedia.org/wiki/Equinumerosity

    Given a set A, the identity function on A is a bijection from A to itself, showing that every set A is equinumerous to itself: A ~ A. Symmetry For every bijection between two sets A and B there exists an inverse function which is a bijection between B and A, implying that if a set A is equinumerous to a set B then B is also equinumerous to A: A ...

  5. List of set identities and relations - Wikipedia

    en.wikipedia.org/wiki/List_of_set_identities_and...

    This article lists mathematical properties and laws of sets, involving the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion. It also provides systematic procedures for evaluating expressions, and performing calculations, involving these operations and relations.

  6. Set (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Set_(mathematics)

    A set of polygons in an Euler diagram This set equals the one depicted above since both have the very same elements.. In mathematics, a set is a collection of different [1] things; [2] [3] [4] these things are called elements or members of the set and are typically mathematical objects of any kind: numbers, symbols, points in space, lines, other geometrical shapes, variables, or even other ...

  7. Set function - Wikipedia

    en.wikipedia.org/wiki/Set_function

    The only translation-invariant measure on = with domain ℘ that is finite on every compact subset of is the trivial set function ℘ [,] that is identically equal to (that is, it sends every to ) [6] However, if countable additivity is weakened to finite additivity then a non-trivial set function with these properties does exist and moreover ...

  8. Pigeonhole principle - Wikipedia

    en.wikipedia.org/wiki/Pigeonhole_principle

    If there is a surjection from A to B that is not injective, then no surjection from A to B is injective. In fact no function of any kind from A to B is injective. This is not true for infinite sets: Consider the function on the natural numbers that sends 1 and 2 to 1, 3 and 4 to 2, 5 and 6 to 3, and so on.

  9. Restriction (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Restriction_(mathematics)

    Let : be a function from a set to a set . If a set is a subset of , then the restriction of to is the function [1] |: given by | = for . Informally, the restriction of to is the same function as , but is only defined on .