Search results
Results From The WOW.Com Content Network
Set is the prototype of a concrete category; other categories are concrete if they are "built on" Set in some well-defined way. Every two-element set serves as a subobject classifier in Set. The power object of a set A is given by its power set, and the exponential object of the sets A and B is given by the set of all functions from A to B.
The definition of a function that is given in this article requires the concept of set, since the domain and the codomain of a function must be a set. This is not a problem in usual mathematics, as it is generally not difficult to consider only functions whose domain and codomain are sets, which are well defined, even if the domain is not ...
The version of this argument he gave in that paper was phrased in terms of indicator functions on a set rather than subsets of a set. [7] He showed that if f is a function defined on X whose values are 2-valued functions on X, then the 2-valued function G(x) = 1 − f(x)(x) is not in the range of f.
In mathematics, especially measure theory, a set function is a function whose domain is a family of subsets of some given set and that (usually) takes its values in the extended real number line {}, which consists of the real numbers and .
This article lists mathematical properties and laws of sets, involving the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion. It also provides systematic procedures for evaluating expressions, and performing calculations, involving these operations and relations.
Let : be a function from a set to a set . If a set is a subset of , then the restriction of to is the function [1] |: given by | = for . Informally, the restriction of to is the same function as , but is only defined on .
For every bijection between two sets A and B there exists an inverse function which is a bijection between B and A, implying that if a set A is equinumerous to a set B then B is also equinumerous to A: A ~ B implies B ~ A. Transitivity Given three sets A, B and C with two bijections f : A → B and g : B → C, the composition g ∘ f of these ...
A set of polygons in an Euler diagram This set equals the one depicted above since both have the very same elements.. In mathematics, a set is a collection of different [1] things; [2] [3] [4] these things are called elements or members of the set and are typically mathematical objects of any kind: numbers, symbols, points in space, lines, other geometrical shapes, variables, or even other ...